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Abstract 
How do buyers judge whether a property is overpriced? Do they base their judgement simply on 
the difference between the asking price and the expected selling price or do they take into account 
the size of this differential relative to typical bid-offer spreads in the locality? Also, do they adjust 
their perceptions according to anticipated house price inflation? And when estimating the market 
value, how sophisticated is the procedure used to gauge the composite value of the location and 
attribute bundle? This paper considers these questions in the context of the Scottish sealed bid 
system. An adjusted measure is developed which controls for differences in local bidding 
conventions, price expectations and dwelling attributes. Comparison is made between a simple 
hedonic estimation of selling price and a complex Multiple Fractional Polynomial estimation. 
Measuring overpricing relative to the local average bid-offer spread is found to increase the 
significance of the overpricing variable in a log-normal survival model of marketing time. At the 
same time, the variance of local bid-offer spreads is found to mitigate the overpricing effect, 
confirming the proposition put forward in the paper that uncertainty about local bidding 
conventions will dampen the impact of overpricing on marketing time. Improvements to the 
hedonic method do not translate into corresponding improvements in the statistical significance of 
the overpricing variable, which may suggest that buyers and sellers base their estimation of the 
market value of a property on relatively simple calculations. 

 
Introduction 
The degree of overpricing has 
proved to be a crucial concept in 
both theoretical and empirical 
models of the housing transactions 
process. In particular, it has been 
found to be a significant 
determinant of time on the market 

(TOM). However, the literature on 
overpricing is predominantly 
American and almost exclusively in 
the context of list-price (or 
equivalent) selling systems. This 
paper considers the meaning of 
overpricing in the context of a 
sealed-bid system where asking 
prices are usually set well below the 
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final selling price (the opposite 
tends to be true in list-price 
systems). Overpricing appears, at 
first, to have little meaning in such 
a setting. The paper offers a 
rationale for the concept in the 
sealed-bid context and considers 
the appropriate method of 
measurement.  
 
The findings have implications not 
only for sealed-bid auctions but also 
for the modelling of overpricing in a 
list-price system. A crucial insight 
offered in the paper is that different 
submarkets will have different 
informal "conventions" with respect 
to the expected difference between 
asking and selling price. These 
"conventions" are neither static nor 
uniform across submarkets, but 
they are nonetheless an essential 
qualification to the meaning and 
measurement of overpricing. It 
means that, for a property to be 
described as "overpriced", the 
difference between asking and 
selling price has to be measured 
relative to the average bid-offer 
spread in the locality. In the data 
considered (3,696 sales in the West 
End of Glasgow, Scotland) I find 
that on average the difference 
between asking and selling price 
rises (i.e. the "convention" changes) 
systematically as the market booms. 
Time on the market tends to fall 
during booms, but it would be 
erroneous to assert that this decline 
in time on the market was due to 
the fall in over pricing. In a dynamic 

market, standard measures of 
overpricing therefore give a biased 
estimate of the effect of overpricing 
because of the distorting effect of 
the incidental time-series correlation 
between the relative bid-offer 
spread and marketing time (see 
Figure 1 and Table 2). The true 
effect of overpricing can only be 
ascertained when this spurious time 
series correlation is controlled for 
(otherwise we have to assume that 
market agents take no account of 
the cyclical and secular movements 
in the average bid-offer spread 
when deciding whether a property 
is overpriced).  
 
The paper also highlights the 
potential for further bias arising 
from the hedonic method used to 
predict the expected selling price of 
a property (crucial to the 
computation of most overpricing 
measures). Most hedonic 
regressions used in the computation 
of overpricing do not account for 
possible spatial or temporal 
variation in attribute prices. I I 
attempt to address this by 
employing a Fik et al (2003) type 
interactive hedonic regression. I 
extend the Fik et al approach by 
including a time interaction variable, 
along with lattitude and longitude 
interactions, and by applying 
Multiple Fractional Polynomial 
Estimation (MFP). MFP offers a new 
level of flexibility in functional form 
estimation, allowing for non-integer 
and non-positive power 
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transformations of explanatory 
variables. The final section of the 
paper presents a log-normal 
survival model of time on the 
market used to compare the 
performance of different measures 
of overpricing. 
 

Existing literature  
Initial measures of overpricing were 
computed as the difference 
between asking and selling price as 
a proportion of selling price (Belkin, 
Hempel and McLeavey, 1976; Kang 
and Gardner, 1989; ). Simple mark-
up measures of this kind, however, 
are susceptible to distortions from 
the idiosynchresies of individual 
sales. They are also particularly 
vulnerable to the distorting effect of 
concurrent cyclical movements in 
the average bid-offer spread and 
time on the market noted in the 
introduction. A preferred measure, 
therefore, is one that compares the 
asking price with the expected 
market price. Yavas and Yang 
(1995), for example, use the log of 
the ratio of predicted sale price to 
the listing price: 

standard overpricing measure 

for dwelling i = 







A

i

S
i

P
P *

ln  

=  A
i

S
i PP lnln * −

Similarly, Jud et al (2001) compute 
“the difference between the natural 
logarithm of the list price and the 
natural logarithm of the predicted 
price form a hedonic price equation” 
(Jud et al 2001, p. 450). There 

remain a number of problems with 
this approach, however. First, there 
is the question of whether there are 
informal “conventions” regarding 
the bid-offer spread and whether 
these conventions vary across 
submarkets or over the course of 
the housing cycle. If so, it is the 
deviation from this convention, 
rather than the actual difference 
between asking and (predicted) 
selling price, that will be important 
in determining TOM. Second, there 
are specification issues surrounding 
the computation of predicted selling 
price – overpricing variables may 
simply be measuring 
misspecification error in the hedonic 
price equation (hedonic regressions 
in most of the studies of overpricing 
have not, for example, accounted 
for non-linearities or 
spatial/temporal shifts in slope 
parameters). Third, there is a 
simultaneity issue with regard to 
the hedonic price computation. If 
final selling price can be affected by 
time on the market (such as the 
seller’s decision to hold out for a 
higher offer or by negative 
herding/stigma effects – see Taylor 
1999; Jud et al 2001), then there is 
a case for the predicted sale price 
being standardized for time on the 
market (for example, sale price 
could be predicted for each dwelling 
for a common marketing time of 
say, 40 days). Fourth, expected 
movements in headline house price 
levels need to be controlled for, 
otherwise apparent “overpricing” 
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may in fact reflect movements in 
market expectations (a seller might 
set an apparently high asking price, 
for example, but this may simply 
reflect an anticipated house price 
boom). Finally, there is the question 
of whether the concept of 
overpricing, having emerged in a 
literature devoted almost entirely to 
the analysis of sealed-bid systems, 
is transferable to alternative 
institutional settings. This question 
is discussed in this paper with 
reference to the Scottish sealed bid 
system as I attempt to construct a 
measure of overpricing that 
incorporates the aforementioned 
caveats.  
 

Definition of over 
pricing in a sealed-bid 
system 
Does the concept of overpricing 
have any meaning in the context of 
a sealed-bid system where asking 
prices are usually set well below the 
selling price? The concept seems at 
first to have little meaning in this 
setting, but on further examination, 
its relevance becomes clear. The 
converse statement, that no 
property is more overpriced than 
another, cannot be true because 
this would preclude the possibility 
of one seller offering a higher 
asking price (for the same property 
in a similar location and time 
period) than another seller. The 
quandry is essentially an 

informational one: how can a 
property be perceived to be 
overpriced in a sealed bid setting 
when most bids will exceed the 
asking price? In the Scottish sealed-
bid system, bidders will ask estate 
agents and surveyors to guide them 
on the typical difference between 
asking and selling price on recent 
sales in that area. Agents will advise 
buyers on what the typical 
difference between asking and 
selling price in locality k as a 
proportion of the asking price at 
that given moment. This proportion 
becomes the convention by which 
bidders and sellers judge whether a 
property is over priced. The bid-
offer spread might typically be 20% 
of the asking price in one area and 
10% in another. Both buyers and 
sellers can confirm the accuracy of 
this advise by checking the recent 
sales prices of properties in the 
locality (through web sites such as 
www.whathouseprice.co.uk) against 
the original asking prices (which are 
published on the web and in local 
newspapers, past editions of which 
are available from public libraries). 
Bidders judge the likely reservation 
price of the seller and the likely sale 
price and decide whether it is worth 
their while making a bid given the 
cost of bidding (the cost of bidding 
is the price of having a professional 
survey done which is a prerequisite 
to bidding given that bids are legally 
binding – if the seller approves a 
bid, the bidder must follow through 
with the purchase). 

http://www.whathouseprice.co.uk/
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We can formalize this process as 
follows. Let γi be the difference 
between asking and selling price as 
a proportion of the asking price for 
dwelling i: 

A
i

S
i

A
i

i P
PP )( −

=γ . 

γi is an ex post entity since it can 
only be computed after the event. 
Let Pik

S* be the average selling price 
(i.e. “market price”) of properties of 
type1 i in area k, and let γk

* be the 
expected differential (as a 
proportion of asking price) between 
asking and selling prices in area k, 
computed as follows, 

∫ ∈= kiiik df γγγγ )(* . 

We assume that (in the absence of 
strategic pricing – see Taylor 1999) 
sellers set the asking price on a 
property according to the following 
ratio, 

i
k
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    (1) 
where Pi

R is the seller’s reservation 
price plus an idiosynchratic mark-
up, vi (vi captures, for example, the 
seller’s beliefs regarding optimal 
price setting). Note that γk

* can 
vary over time – the t subscript is 
omitted for sake of parsimony. So if 
vi = 0, the seller’s reservation price 
is £120K, and the local convention 
on the bid-offer spread is -20% (i.e. 
properties in the area tend to sell 

for twenty per cent over the asking 
price), the seller will set the asking 
price at £100K. A property is said to 
be overpriced, therefore, when the 
expected market price, Pik

S* is less 
than the asking price plus the 
current local differential, 

                                                 
1 defined in terms of structural and location attributes. 

A
ik
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    (2) 
So, sellers seeking to effect a rapid 
sale may set the asking price below 
what might be expected (i.e. below 
what would be anticipated given the 
current proportionate price 
differential, γ), and those willing to 
hold out for a higher price might set 
the asking price higher than similar 
properties in an area. While the 
asking price is not usually 
equivalent to the reservation price 
(the seller will typically expect the 
sale price to be above the asking 
price and has the right to refuse 
any or all offers) it remains a signal 
of seller reservation prices.  
 
The degree of overpricing, θ, is 
given by, 
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It follows that: 
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θ  overpricing rises 

as the asking price rises, cet 
par; 

,0* <
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P
θ  overpricing falls as 

the expected sales price falls, 
cet par. 
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The impact of overpricing on 
the probability of sale 
Assume that potential bidders 
perceive the asking price to be a 
signal of the sellers reservation 
price. If (1 - γk

*) Pi
A is perceived to 

be a signal of the reservation price, 
Pi

R, then the bidders estimate of the 
reservation price is given by, 

Pi
R
 = (1 - γk

*) PiA + ei
R
 , where 

ei
R ~ iid, 

If bidders face a budget constraint, 
then the greater the value of Pi

A, 
the less likely the potential buyer 
will be to submit a bid. The smaller 
the difference between a bidders’ 
maximum possible bid (given her 
budget constraint) and PR, the 
greater the perceived probability 
that her bid will be superceded by 
other bids. Therefore, if there is a 
non-trivial cost to bidding, the risk 
of making a failed bid will deter 
bidders who cannot bid significantly 
above the asking price. So raising 
the asking price cet par has a 
screening effect and this will be 
exacerbated if there are close 
substitutes currently for sale in the 
area. For a given house type, 
therefore, the higher the asking 
price the more bidders will be 
screened out and the lower the 
number of bids, λt, in period t, 

λt  = λt(θ, 
ikγσ ) 

where 
ikγσ  is the standard deviation 

of γi in area k , θ is the degree of 
overpricing, and, 

 0<
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The first inequality says that the 
greater the degree of overpricing 
relative to the current convention, 
the lower the number of bids. The 
second inequaility states that the 
inpact of overpricing on the number 
of bids is amelioriated by the 
standard deviation of the relative 
bid-offer spread in area k. The 
greater the standard deviation of 
spreads, the greater the uncertainty 
about the current convention and 
the greater the ambiguity about 
whether a property is to be 
regarded as overpriced. 
 
 
If the distribution of bids is normal, 
the probability of the seller 
receiving a bid greater than his 
reservation price in period t will be 
given by,  

∫=≥= dzzPP
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 ,  
where b = 1, 2, …λ denotes bids 
received in time period t and where, 

 ./)( σµ−= R
iPz

It can be seen that, 0<
∂
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t

it

θ
ψ . In 

other words, as θ, the degree of 
overpricing (measured with respect 
to the current market convention on 
the bid-offer spread in area k) rises, 
the probability of sale falls in the 
current period (cf Green and 
Vandall who show that overpricing 
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slows the rate of offers).  
 
Why do asking and selling prices 
diverge during a housing boom?  
Estate agents in the Scottish system 
often advise sellers to set the 
asking price well below the 
expected selling price and as such 
brokers have an important role in 
shaping the “current convention”. 
When asked, their justification for 
this strategy is that by setting 
asking price as low as possible 
they will attract more viewers, and 
hence more surveys and bids. This 
explanation raises the question of 
why the bid-offer spread seems to 
rise systematically during a boom. 
During a slump one would think 
that there would be equally good, 
if not greater, reason to maximise 
the number of bidders. Also, one 
would anticipate that even 
imperfectly informed potential 
bidders will accommodate the 
diverging spread by adjusting their 
expectations regarding the likely 
selling price based on the average 
spread on the locality in the last 
time period, so no more bidders 
will be attracted. Two 
complementary explanations are 
worth considering. First, estate 
agents attempt to talk up the 
market and there is greater scope 
for doing this during an upswing. 
Reports of growing bid-offer 
spreads is a commonly perceived 
sign of a bouyant market and so 
agents are keen to reinforce this 
view by restraining the growth in 

asking prices during an upswing to 
be less than the growth in sale 
price.  

 
Second, estate agents have an 
incentive to maximise bidder 
uncertainty as a means of 
extracting the maximum surplus. 
They benefit from achieving greater 
sales price because their 
commission is based on a 
proportion of sales prices. As such, 
agents seek to maximise the 
variance of spreads not just the 
average spread. To illustrate, 
suppose we increase the variance if 
bids in such a way that for every 
increased bid there is an equivalent 
decrease in another bid. As a result, 
the mean bid stays the same in a 
symmetrical distribution, but will 
rises in a lower truncated normal 
distribution. Such a truncation of 
bids is likely because few will bid 
below the asking price given that 
the asking price is at least as large 
as the seller’s reservation price. 
Either way, it is usually the 
maximum bid which the seller 
selects all sealed bids are finally 
revealed, so as the variance 
increases so does the likely 
maximum bid. Agents are keen to 
inform bidders of recent rises in 
local spreads because this helps to 
raise the average bid. This has 
limited effect, however, as bidders 
base their perception of the mean 
of the likely distribution of bids on 
recent local averages which agents 
cannot affect after the event. As 
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such, there is no difference in the 
rise in the average bid compared to 
a fixed spread regime. However, if 
uncertainty rises with divergence 
then the greater the mean bid-offer 
spread and the greater the variation 
in the bid-offer spread (as the mean 
bid moves away from the lower 
truncation the variance of the 
distribution rises). So agents have 
an incentive to maximise the 
spread.  
 
During downturns, the lower 
truncation (i.e. the asking price) 
cannot be reduced very much 
because the sellers reservation price 
will have a floor even in the 
severest slumps due to negative 
equity (see Stein, 1995). So the 
reservation price acts as a lower 
bound to the asking price and 
during a slump in the housing 
market, the asking price will 
converge towards this lower bound. 
 

Possibility of Positive Herding in 
a sealed bid system? 
Taylor (1999, p.556) argues that, "if 
an individual has only a single 
house to sell, then positive herding 
can never occur because the first 
consumer who likes the house 
enough to buy it ends the game." 
He contrasts this with the finding in 
the strategic pricing and consumer 
experimentation literature that 
shows that firms will "set low 
introductory prices so as to promote 
the flow of information among 
consumers, ie so as to encourage 

herding". Taylor argues that this 
kind of positive herding can only 
occur when the seller has a future 
stream of output to market, 
whereas house sellers typically have 
a single property they want to sell. 
 
Perhaps positive herding can, 
however, occur in a sealed bid 
system where the number of 
viewers can act as a signal of 
quality/demand. If there are many 
viewers, then interested buyers will 
be more likely to view the house as 
a desirable residence and will 
anticipate a larger number of bids. 
Because there is a cost to bidding, 
bidders want to avoid unsuccessful 
bids and so if they anticipate stiff 
competition for the property they 
will be more likely to offer a higher 
bid in the hope of maximising their 
chances of offering the highest bid. 
Note that the final number of bids is 
often not known to any party until 
after the bidding has closed since 
many bidders do not put in a bid 
until 30 minutes or less before the 
final deadline for bids. 
 
During a slump, there is less scope 
for positive herding because in 
many cases there will be only one 
or two bids received within the 
seller’s optimal/maximum time 
frame for moving. As housing 
market slows, the total number of 
bids declines, converging to zero in 
a completely stagnant market. 
Sellers will be forced to either 
accept or reject the first offer given 
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and so the sealed bid system during 
a slump becomes analogous to a 
bargaining system (such as the list 
price systems in England and North 
America). Note that this cyclical 
asymmetry will result in an 
apparent correlation between 
overpricing and TOM, but this 
correlation is not causal. 
 
 
Application to the List Price 
System 
The qualifications introduced above 
to the definition and measurement 
of overpricing can be applied to 
other selling systems. It is perfectly 
feasible, for example, that buyers 
and sellers in a list price system will 
also be influenced by local bidding 
conventions when forming their 
beliefs about whether a property is 
overpriced. For example, if in a list 
price system the buyer knows that 
selling prices tend to go for around 
20% below list price, he will bargain 
accordingly, unless he thinks the 
seller has set the asking price at 
odds with local bidding conventions, 
in which case the bidder may view 
the property as being overpriced 
and either offer less than 80% of 
the asking price, or if there is a cost 
to bidding, consider alternative 
properties.  
 
The property will therefore be 
perceived as under or over priced 
relative to the current convention. 
This distinction only has any notable 
implications for the measurement of 

overpricing if the convention for γ 
varies significantly across 
submarkets and over time. That 
certainly seems to be the case in 
the Scottish sealed bid system (see 
Figure 1, Figure 2, and Figure 3) 
though it has yet to be verified 
whether similar discrepancies occur 
in list price systems. The other 
concerns listed in the literature 
review (and again below) about 
existing definitions of overpricing 
apply directly to list price systems. 
 

Econometric Strategy 
Problems with existing measures 
of DOP 
Compare equation (3) with the 
following unadjusted measure of 
overpricing (denoted by θ#),  

,
#

#
A

i

H
i

A
i

P
PP −

=θ    

   (3)# 
where Pi

H# is the predicted value 
from a hedonic price regression for 
dwelling i. There are a number of 
sources of potential error associated 
with θ. First, the ommission of γkt

* 
will result in the degree of 
overpricing being over (under) 
estimated in areas where γkt

* is 
below (above) the mean value of γ 
across all areas in a given period, 
and similar bias will arise from 
changes in γkt

* over time. A second 
potential source of bias arises from 
the specificaiton of Pi

H#. Spatial and 
temporal shifts in the market 
valuation of attributes may give rise 
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to further misleading estimates of 
over pricing if Pi

H# is not estimated 
in such a way as to account for 
structural breaks of this kind, 
though there is a question over the 
degree of rationality and perfect 
foresight on which bids are based. 
Perhaps buyer/seller beliefs about a 
property’s value are based on 
simple rules of thumb that are best 
approximated by a fairly 
rudimentary hedonic model. This 
may be true even when the bidder 
is assisted by the advice of a 
Chartered Surveyor, as valuers’ 
“professional judgement” may in 
fact boil down to a fairly simple set 
of intuitive rules.  
 
Third, Pi

H# is only meaningful if it is 
estimated for a specific time on the 
market in a given area, as 
differences in observed sale prices 
may be partly due to different 
holding periods between sales that 
have nothing to do with the 
attributes of the dwelling. Fourth, 
the rate of house price inflation has 
to be taken into account since both 
buyers and sellers are likely to 
adjust their valuation of the 
property according to expected 
price rises in the area. 
 
Explanation of Multiple 
Fractional Polynomial 
Estimation 
The first step in achieving a 
measure of overpricing is to decide 
on the hedonic method to be used 
for estimating the “market value” of 

a property on the market. To 
investigate whether market agents 
use sophisticated valuation 
procedures in their perception of 
overpricing,two contrasting hedonic 
models are used. The first is a very 
simple hedonic price regression that 
includes neither spatial interactions 
nor non-linear transformations. The 
second procedure is a relatively 
sophisticated hedonic regression 
which uses Multiple Fractional 
Polynomial (MFP) regression 
estimation to arrive at a unique 
Time Location Value Signature 
(TVLS) for each property. This is 
draws on the intuition and 
methodology of Fik et al (2003) and 
extends it in two important ways. 
First, the Fik et al model is static in 
that it takes no account of changes 
to the Location Value Signature 
over time. We augment the Fik 
model to include continuous time 
interactives (interacted with both 
attributes and latitude and 
longitude to account for movements 
and twists in the price surface over 
time) complemented by year and 
season dummies to capture step 
shifts in attribute values. Second, 
rather than a simple OLS interaction 
model, we adopt a “multiple 
fractional polynomial” estimation 
procedure. Royston and Altman 
(1994 Applied Statistics) argued 
that one of the weaknesses of 
conventional “integer” polynomial 
models (such as that of Fik et al) is 
that quadratic functions are 
“severely limited in their range of 
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curve shaps”, whereas “cubic and 
higher order curves often produce 
undesirable artifacts, such as “edge 
effects” and “waves”” (Stata 
manual, p.400). An integer 
polynomial (in a single variable) of 
degree m can be written as, 

β0 + β1x + β2x2 + … βmxm. 
A fractional polynomial on the other 
hand, of the same degree, has m 
integer and/or fractional powers, p1 
< … < pm, 

β0 + β1x(p1) + β2x(p2) + … 
βmx(pm). 

where,  

x(p)  ,  

where x > 0. 




=
≠

=
0 if   log
0 if      

)(
px
px

px
p

This can be extended to include 
repeated powers of the form, 

()()(
2

)(
10 log...log ++++ p

m
pp xxxxx ββββ

 
) 1−m

As appealing as this method may 
be, the estimation of a regression 

with fractional polynomials in one 
variable is of limited value in the 
current context because there many 
possible determinants of a 
dwelling’s market value. Royston 
and Altman (1994, Applied 
Statistics) suggested a possible 
algorithm for joint estimation of 
fractional polynomials of several 
continuous variables, an approach 
later refined by Sauebrei and 
Royston (1999) and made available 
in Stata programming format. This 
is the algorithm applied here. It 
involves ordering the continuous 
explanatory variables eligible for 
fractional polynomial transformation 
into order of increaseing p-values 
with a view to modelling relatively 
significant variables before relatively 
insignificant ones. This approach, 
Sauebrei and Royston (1999) argue 
will “help reduce the potential 
model-fitting difficulties causes by 
collinearity or more generally, 
“concurvity”, among the 
explanatory variables” (Stat manual, 
p. 401). It was found that MFP 
estimation works best if it starts 
with a reasonably well specified 
model. Therefore, prior to MFP 
estimation, an OLS stepwise 
procedure was run. This was akin to 
Fik et al but without non-linear 
transformations of the explanatory 
variables. Having dropped out the 
least significant interactions and 
variables, the MFP model was 
estimated with the following set of 
possible power transformations: -4, 
-3.5, -3, -2.5, -2, -1.5, -1, -0.8, -

A fractional polynomial of degree m 
= 2 with repeated powers of 0.5 is, 

 xxxxx loglog 5.0
2

5.0
2

5.0
10 ββββ +++

(see Stata manual, p. 402). Royston 
and Altman illustrate that although 
the deviance of such models does 
not improve greatly on integer 
polynomial estimation, the 
estimated curves avoid some of the 
pecuiliar shapes produced by 
integer polynomial estimation. A 
fractional polynomial can include a 
combination of unique and repeated 
powers. If the powers are listed as 
(-1, 1, 3, 3) the model estimated 
would be, 

xxxxx log3
4

3
32

1
10 βββββ ++++ −  
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0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 
1, 1.5, 2, 2.5, 3, 3.5, and 4. 
 
 

Data  
Table 1 presents summary statistics 
on the data which were provided by 
Glasgow Solicitors Property Centre 
(GSPC), a consortium of estate 
agents with market shares across 
the city of Glasgow and surrounding 
areas. The data are for the period 
1999 quarter 1 to 2004 quarter 1 
for the West End of Glasgow. As the 
table shows, the area has relatively 
few houses (18.5%) and is largely 
made up of tenement flats. The 
typical sale is of a two bedroom flat 
with no driveway. dQik

om/Qik
om and γI 

are defined below. Table 2, Figure 
1, and Figure 2 show the dynamic 
nature of the market over the 
period under consideration. Asking 
prices rose by a total of 79.6% over 
the five year period, and seling 
prices rose by an even more 
impressive 114.6%. The divergence 
between asking and selling is 
highlighted further by the 
spectacular increase in γ (asking 
price less selling price all over 

asking price) from 5.9% to 29.4%. 
While γ and TOM appear to decline 
over time (see Figure 2) it seems 
highly unlikely that the fall in γ is 
the cause of the fall in TOM.  
 
Table 3 demonstrates the variation 
of γ  across space by computing the 
average for each post code sector 
in the West End of Glasgow. 
Ignoring the sectors with less than 
100 sales it can be seen that the 
average bid-offer spread relative to 
the asking price varies considerably 
between post code sectors from –
33.5% in sector G11 5 to –15.7% in 
sector G14 0. Post code sectors are 
administrative constructs and do 
not necessarily correspond to 
submarket boundaries, however. In 
an attempt to rectify this problem I 
define area k not in terms of post 
code sectors or local authority areas 
but in terms of the 3km radius 
around each dwelling. The contour 
plot of γi

*, the average value of in 
the 3km radius of each property 
sale in the West End of Glasgow, is 
presented in Figure 3. Significant 
variation in contours again suggest 
significant spatial differentials in 
bidding conventions.
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Table 1 Descriptives 
 n mean sd 

 askingpr 3,445 76897.100 41522.980 
 sellingp 3,305 97169.970 57503.850 
 tom 3,352 41.408 41.682 
 dQik

om/Qik
om  3,377 0.147 0.365 

γi 3,377 0.159 0.034 
    
 hous_all 3,445 0.185  
 bedrooms 3,425 1.989  
 views 3,445 0.056  
 driveway 3,445 0.025  
 mature 3,445 0.015  
 garden_d 3,445 0.506  
 GCH 3,445 0.554  
 alarm 3,445 0.054  
 bay 3,445 0.397  

 CBD = distance to central business district;  
 GCH = gas central heating; TOM = time on the market 
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Table 2 West End: Quarterly Change in γI 
   Average 

Asking 
Price  

Annual % 
change in 

Asking 
Price 

Quarterly 
% change 

since 
1999q1 

 Average 
Selling 
Price  

Annual % 
change in 

Selling 
Price 

Quarterly 
% change 

since 
1999q1 

Median 
No. Days 
on Mkt 

Annual % 
change in 

Median 
DOM 

Quarterly 
% change 

since 
1999q1 

 γι  Annual % 
change in 

gi 

Quarterly 
% change 

since 
1999q1 

99Q1  £ 54,047    0.0%  £ 57,806   0.0% 98.5   0.0% -5.9%   0.0% 
99Q2  £ 58,012    7.3%  £ 65,916   14.0% 75   -23.9% -10.7%   80.5% 
99Q3  £ 59,680    10.4%  £ 67,246   16.3% 54   -45.2% -10.9%   84.1% 
99Q4  £ 61,883    14.5%  £ 71,008   22.8% 35   -64.5% -11.7%   98.3% 
00Q1  £ 55,493  2.7% 2.7%  £ 62,467 8.1% 8.1% 42 -57.4% -57.4% -11.0% 86.9% 86.9% 
00Q2  £ 64,592  11.3% 19.5%  £ 76,056 15.4% 31.6% 41 -45.3% -58.4% -14.0% 31.9% 138.0% 
00Q3  £ 62,620  4.9% 15.9%  £ 73,623 9.5% 27.4% 35.5 -34.3% -64.0% -14.4% 32.2% 143.4% 
00Q4  £ 62,780  1.4% 16.2%  £ 71,026 0.0% 22.9% 42 20.0% -57.4% -10.7% -8.4% 81.7% 
01Q1  £ 65,169  17.4% 20.6%  £ 75,640 21.1% 30.9% 39 -7.1% -60.4% -13.6% 23.7% 131.2% 
01Q2  £ 68,141  5.5% 26.1%  £ 79,947 5.1% 38.3% 33 -19.5% -66.5% -15.6% 11.3% 164.8% 
01Q3  £ 69,370  10.8% 28.3%  £ 80,806 9.8% 39.8% 33 -7.0% -66.5% -14.4% 0.0% 143.3% 
01Q4  £ 73,596  17.2% 36.2%  £ 86,288 21.5% 49.3% 34.5 -17.9% -65.0% -15.6% 45.2% 163.8% 
02Q1  £ 67,145  3.0% 24.2%  £ 80,340 6.2% 39.0% 22 -43.6% -77.7% -18.2% 33.5% 208.6% 
02Q2  £ 77,117  13.2% 42.7%  £103,505 29.5% 79.1% 28 -15.2% -71.6% -31.2% 99.4% 428.1% 
02Q3  £ 74,535  7.4% 37.9%  £ 94,148 16.5% 62.9% 28 -15.2% -71.6% -25.2% 75.4% 326.8% 
02Q4  £ 79,459  8.0% 47.0%  £ 99,025 14.8% 71.3% 34 -1.4% -65.5% -22.7% 45.8% 284.5% 
03Q1  £ 80,166  19.4% 48.3%  £103,768 29.2% 79.5% 30 36.4% -69.5% -27.8% 52.8% 371.6% 
03Q2  £ 83,881  8.8% 55.2%  £108,415 4.7% 87.6% 32 14.3% -67.5% -28.4% -8.8% 381.9% 
03Q3  £ 98,910  32.7% 83.0%  £126,608 34.5% 119.0% 32 14.3% -67.5% -29.1% 15.7% 393.7% 
03Q4  £ 95,832  20.6% 77.3%  £120,957 22.1% 109.2% 34 0.0% -65.5% -27.7% 21.9% 368.8% 
04Q1  £ 97,074  21.1% 79.6%  £124,034 19.5% 114.6% 29 -3.3% -70.6% -29.4% 5.5% 397.7% 

                          

99ave  £ 58,405       £ 65,494     66     -9.8%     
00 ave  £ 61,371  5.1%    £ 70,793 8.2%   40 -29.2%   -12.5% 35.7%   
01 ave  £ 69,069  12.7%    £ 80,670 14.4%   35 -12.9%   -14.8% 20.1%   
02 ave  £ 74,564  7.9%    £ 94,255 16.7%   28 -18.8%   -24.3% 63.5%   
03 ave  £ 89,697  20.4%    £114,937 22.6%   32 16.2%   -28.3% 20.4%   

Ave  £ 70,621  11.5%    £ 85,230 15.5%   40 -11.2%   -17.9% 34.9%   
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Figure 1 
 

Increasing Divergence Between Asking and Selling Prices During a Boom 
gamma = (Asking Price - Selling Price)/Asking Price
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Figure 2 

 
 

The Apparent Correlation Between gamma and Time on the Market
gamma = (Asking Price - Selling Price)/Asking Price
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Table 3 Variation in γ Across Post Code Sectors 
 

Post 
Code 

Sector Mean γ 

Standard 
Deviation of 

γ N 
G11 5 -33.5% 17.1% 213 
G12 9 -33.3% 18.1% 297 
G61 1 -30.9% 9.5% 2 
G12 8 -29.6% 18.1% 141 
G4 9 -28.9% 16.9% 74 
G20 6 -28.8% 16.6% 241 
G11 7 -28.6% 17.2% 378 
G3 7 -26.8% 18.1% 39 
G11 6 -25.0% 12.9% 110 
G3 8 -24.6% 13.7% 96 
G12 0 -24.2% 16.6% 251 
G14 9 -23.9% 17.4% 206 
G20 8 -23.4% 16.3% 160 
G3 6 -22.5% 14.8% 42 
G20 9 -21.4% 21.0% 32 
G13 3 -21.3% 14.3% 211 
G20 7 -20.8% 13.2% 76 
G13 1 -20.7% 14.8% 305 
G13 2 -17.3% 14.7% 208 
G15 6 -17.0% 13.3% 80 
G20 0 -16.3% 15.5% 70 
G13 4 -16.3% 12.1% 82 
G14 0 -15.7% 15.2% 147 
G23 5 -13.7% 17.8% 64 
G1 5 -13.3% 0.0% 1 
G15 8 -9.9% 7.3% 17 
G15 7 -9.1% 10.5% 10 
G22 6 -7.6% 0.0% 1 
G64 2 -6.3% 0.0% 1 
G31 1 -4.1% 0.0% 1 
    
Total -24.5% 17.0% 3556 
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Figure 3 

66
50

00

66
60

00

66
65

00

66
70

00

66
75

00

66
80

00

66
85

00

66
90

00

66
95

00

67
00

00

67
05

00

67
10

00

67
15

00

67
20

00

67
25

00

n251000

n251500

n252000

n25n2500

n253000

n253500

n254000

n254500

n255000

n255500

n256000

n256500

n257000

n257500

n258000

n258500

n259000

n259500

n261500

Easting

Northing

Spatial Variation in  Local B idding Conventions
Contour P lot of Average gam m a w ithin 3km  Radius of Property i

0.34-0.36

0.32-0.34

0.3-0.32

0.28-0.3

0.26-0.28

0.24-0.26

0.22-0.24

0.2-0.22

0.18-0.2

0.16-0.18

0.14-0.16

0.12-0.14

0.1-0.12

 
 
 

Hedonics 
Table 4 presents the results of 
the simple hedonic model 
developed for comparative 

purposes. Table 5 presents the 
results of the Multiple Fractional 
Polynomial procedure described 
above.
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Table 4 Simple OLS Hedonic Model 

 β t sig. 
95% Conf. 

Interval 
 rooms 0.2207 37.06 0.000 0.2090 0.2324
 traditional-Victorian 0.1984 12.63 0.000 0.1676 0.2291
 lower flat -0.0500 -2.89 0.004 -0.0839 -0.0161
 upper flat -0.0333 -1.89 0.059 -0.0678 0.0013
 main door flat 0.1682 3.37 0.001 0.0703 0.2661
 garage 0.1237 5.34 0.000 0.0783 0.1692
 parking 0.0256 1.22 0.223 -0.0156 0.0669
 needs-upgrading -0.1886 -2.34 0.019 -0.3464 -0.0308
 luxury 0.2169 5.69 0.000 0.1422 0.2917
 Spring 0.0095 0.47 0.637 -0.0300 0.0491
 Summer 0.0423 1.96 0.050 0.0000 0.0846
 Autumn 0.0130 0.54 0.589 -0.0342 0.0603
 D2002 -0.2973 -1.55 0.121 -0.6729 0.0783
 D2003 -0.2321 -0.91 0.361 -0.7306 0.2663
 D2004 0.5583 17.30 0.000 0.4950 0.6215
 t.D2001 0.0599 6.60 0.000 0.0421 0.0777
 t.D2002 0.1538 2.85 0.004 0.0480 0.2596
 t.D2003 0.1487 2.63 0.009 0.0378 0.2595
 constant 10.1041 300.88 0.000 10.0382 10.1699
      
 Number of obs 3,530     
 F( 18, 3511) 152.04     
 Prob > F 0.000     
 R-squared 0.438     
 Adj R-squared 0.4352     
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Table 5 Multiple Fractional Polynomial Time-Space Interaction Model 
 β t sig. 95% Conf. Interval 

 bedrooms0.4 -0.6875 -6.97 0.000 -0.8809 -0.4941 
 bedrooms3.5 -1.1657 -5.03 0.000 -1.6198 -0.7117 
 publicrooms-0.6 -0.1987 -3.87 0.000 -0.2994 -0.0980 
 CBD0.2 19.8890 16.61 0.000 17.5416 22.2364 
 CBD0.2.ln(CBD) -3.3073 -17.04 0.000 -3.6878 -2.9268 
 x.rooms 2.8067 4.24 0.000 1.5100 4.1035 
 (x.y.rooms)-2 0.0737 7.2 0.000 0.0536 0.0937 
 x.y.rooms -41.2626 -4.17 0.000 -60.6702 -21.8549 

 (t.x.rooms)0.6 -93.0295 -3.96 0.000 
-

139.1218 -46.9373 
 t.x.rooms 130.2189 4.81 0.000 77.1646 183.2732 
 (t.x.y.rooms)0.8 10.5065 2.97 0.003 3.5632 17.4497 
 
(t.x.y.rooms)0.8.ln(t.x.y.ro
oms)   -9.7263 -4.52 0.000 -13.9441 -5.5085 
 y.spacious 0.0075 4.25 0.000 0.0040 0.0110 
 x.conservatory 0.0657 2.97 0.003 0.0223 0.1092 

 x.house3 -120.6101 -7.03 0.000 
-

154.2352 -86.9850 
 x.house4 35.5495 7.02 0.000 25.6276 45.4713 
 x.y.house4 186.3960 7.1 0.000 134.8970 237.8949 

 x.y.house4.ln(x.y.house) -239.1487 -7.12 0.000 
-

305.0418 
-

173.2556 
 x.detached-bungalow 0.1960 6.47 0.000 0.1366 0.2554 
 y.semi-bungalow 0.0587 3.57 0.000 0.0264 0.0909 
 x.detached-villa 0.0387 1.72 0.085 -0.0054 0.0829 
 t.y.semi-villa 0.0039 3.77 0.000 0.0019 0.0059 
 x.house.Victorian -0.0072 -0.52 0.602 -0.0344 0.0199 
 x.y.conversion 0.0222 13.69 0.000 0.0190 0.0253 
 t.x.garden 1.0133 1.32 0.188 -0.4959 2.5224 
 t.y.garden 0.1796 2.57 0.010 0.0424 0.3168 
 t.x.y.garden -0.2217 -1.72 0.086 -0.4748 0.0314 
 x.y.views 0.0025 2.07 0.039 0.0001 0.0049 
 x.garage 1.7111 1.69 0.090 -0.2693 3.6915 
 t.y.parking 0.3374 3.77 0.000 0.1618 0.5129 
 t.x.y.parking -0.1317 -3.76 0.000 -0.2004 -0.0631 
 y.luxury -1.7461 -0.67 0.500 -6.8222 3.3301 

 (x.bay)2.5 -185.1750 -10.74 0.000 
-

218.9919 
-

151.3581 
 (x.bay)4 28.4327 10.77 0.000 23.2551 33.6103 
 (x.y.bay)4 267.6344 10.71 0.000 218.6298 316.6391 

 (x.y.bay)4ln(x.y.bay) -341.7590 -10.72 0.000 
-

404.2703 
-

279.2478 
 t.x.bay 0.0035 1.32 0.186 -0.0017 0.0088 
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 y.ensuite 0.0277 6.41 0.000 0.0192 0.0362 
 x.y.GCH 0.0078 5.83 0.000 0.0052 0.0105 
 t.x.GCH -0.0032 -1.22 0.221 -0.0084 0.0019 
 t.D2001 -0.0064 -0.03 0.975 -0.4131 0.4003 
 t.D2002 0.1845 1.31 0.192 -0.0924 0.4614 
 t.D2003 0.3895 2.54 0.011 0.0887 0.6903 
 TOM -0.0004 -4.28 0.000 -0.0006 -0.0002 
 traditional-Victorian 0.0696 5.43 0.000 0.0444 0.0947 
 lower-flat 0.0206 1.51 0.131 -0.0061 0.0474 
 upper-flat 0.0246 1.77 0.077 -0.0027 0.0519 
 main-door-flat 0.1032 2.78 0.006 0.0303 0.1761 
 garage -4.2435 -1.65 0.099 -9.2855 0.7986 
 parking 0.0435 1.27 0.206 -0.0239 0.1110 
 needs-upgrading -0.1040 -1.76 0.079 -0.2200 0.0120 
luxury 11.7956 0.68 0.495 -22.1156 45.7068 
 Spring -0.0026 -0.15 0.885 -0.0379 0.0327 
 Summer -0.0008 -0.03 0.972 -0.0444 0.0428 
 Autumn -0.0256 -1.17 0.240 -0.0683 0.0171 
 D1999q2 -0.1041 -2 0.046 -0.2064 -0.0018 
 D1999q3 -0.2025 -3.3 0.001 -0.3230 -0.0820 
 D1999q4 -0.2614 -3.81 0.000 -0.3958 -0.1270 
 D2000q1 -0.4065 -5.33 0.000 -0.5561 -0.2569 
 D2000q2 -0.3713 -4.69 0.000 -0.5266 -0.2160 
 D2000q3 -0.4235 -4.89 0.000 -0.5935 -0.2535 
 D2000q4 -0.4402 -4.79 0.000 -0.6204 -0.2599 
 D2001q1 -0.5044 -1.13 0.259 -1.3801 0.3713 
 D2001q2 -0.4854 -0.97 0.330 -1.4631 0.4923 
 D2001q3 -0.5055 -0.93 0.354 -1.5746 0.5635 
 D2001q4 -0.4768 -0.81 0.421 -1.6377 0.6841 
 D2002q1 -1.0718 -2.39 0.017 -1.9527 -0.1909 
 D2002q2 -0.9840 -2.03 0.042 -1.9332 -0.0349 
 D2002q3 -1.0863 -2.11 0.035 -2.0960 -0.0765 
 D2002q4 -1.1190 -2.05 0.040 -2.1895 -0.0485 
 D2003q1 -1.9709 -3.08 0.002 -3.2268 -0.7149 
 D2003q2 -2.0391 -3.04 0.002 -3.3537 -0.7244 
 D2003q3 -2.0590 -2.9 0.004 -3.4504 -0.6675 
 D2003q4 -2.1801 -2.93 0.003 -3.6393 -0.7210 
 D2004q1 -0.2452 -2.07 0.039 -0.4780 -0.0124 
 Constant -71.0876 -10.05 0.000 -84.9604 -57.2149 
      
 N 3,530     
 F( 75, 3,454) 112.630     
 Prob > F 0.0000     
 Adj R-squared 0.7035     
 CBD = distance to central business district; GCH = gas central heating; TOM = time on the market 
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Impact of Overpricing 
on Marketing Time 
In this section I construct a series 
of survival models of time on the 
market to compare the effects of 
different definitions of overpricing. 
Note that improvements in 
definition and measurement will 
not necessarily translate into 
higher t-values or larger 
coefficients.  While the effects of 
uncorrected measures are blunted 
by the distortions inherent in their 
computation, they may also 
contain a spurious time-series 
correlation between 
contemporaneous momvents in 
time on the market and the bid-
offer spread (see Figure 2). Note 
that if the data include submarkets 
that are at different phases of the 
housing cycle, the specious time 
series correlation will have a 
spatial/cross-sectional 
manifestation. Different areas will 
have different conventions 
regarding gamma and so even 
studies of short time periods may 
be affected. Spatial differentials 
may also arise from long term 
structural differences between 
areas that produce secular 
differences in γk

*. Evidence has 
been found for a positive 
correlation between overpricing 
and time on the market. Measuring 
overpricing relative to the local 
average bid-offer spread increased 

the significance of the overpricing 
variable in a log-normal survival 
model of TOM. The improvement 
was surprisingly large given that 
the paper has argued that stripping 
out the spurious time-series 
correlation between TOM and 
average bid-offer spreads would 
ameliorate any gains from 
improvements in measurement 
precision. The variance of local bid-
offer spreads also proved to be 
highly statistically significant in all 
the regressions and continued the 
proposition that the effect of 
overpricing would be mitigated by 
the degree of uncertainty regarding 
whether a property was in fact 
overpriced. The lower the variance 
of bid offer-spreads in an area, the 
easier it is to spot excessively high 
asking prices. Interestingly, 
improvements to the hedonic 
regression did not translate into 
corresponding improvements in the 
t-ratios of the overpricing variable. 
This suggests that market agents 
base their calculation of overpricing 
on relatively simple calculations. 
Attempts to capture the inflation 
expectations did not prove 
successful. Future versions of the 
paper will attempt to construct 
more robust measures of 
expectations with a view to 
rectifying this. 
 
I also seek to use the survival 
models to test the proposition 



 22

presented in the theoretical section 
that the less certain bidders are 
about the current “convention” in 
the market they seek to bid in, the 
less obvious it will be that a 
property is overpriced, and this will 
dampen the impact of overpricing 
on marketing time.  In the 
regressions that follow, the 
standard deviation of γik is used to 
measure the degree of uncertainty, 
where k is taken to be the area 
within a 3km radius of property i (if 
a radius smaller than 3km is used, 
there are sample size problems).  
 
The variety of definitions of 
overpricing are compared log-
normal survival model which 
controls for dwelling attribute 
differences between variables, and 
variations (between areas and over 
time) in market buoyancy at the 
time property i comes onto the 
market (Pryce and Gibb 2003 
argue that failure to control for 
variation in market buoyancy 
across space and over time distorts 
the estimation of the survival 
function). The measure used to 
control for market buoyancy is 
dQik

om/Qik
om, the change in the 

quantity of properties on the 
market k, as a proportion of the 
number of properties on the 
market before the change (where k 
is again defined as those properties 
within a 3km radius of the property 
i).  The period used to compute 

dQik
om/Qik

om is the 60 day period 
prior to property i coming onto the 
market – any shorter period of 
time results in sample size 
problems. Note that the 
computation of the k based 
variables is not truncated by the 
boundaries of our data (i.e. the 
“West End”) since data on 
contiguous areas were also 
available. 
 

Results: Control Variables 
First consider the results for the 
control variables reported in the 
various models (Table 6). The 
progressively negative values on 
the time dummies (compared with 
the baseline period, which is the 
first in the dataset – the quarter 
one of 1999) show that the market 
as a whole is experiencing an 
upswing until quarter 3 of 2003, 
after which the coefficients on the 
time dummies become less 
negative (there is also a dip in the 
second half of 2002). Attribute 
coefficients remain relatively stable 
across the different model 
specifications. The significant 
negative coefficient on the “house” 
and “garden” variables indicates 
that houses tend to sell faster than 
flats and that dwellings with 
gardens sell more rapidly than 
those without. Similarly, houses 
with notable views tend to sell 
more quickly than those without, 
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as do dwellings with a driveway, 
those in a mature area, those with 
gas central heating, or those a bay 
window (though the effect of these 
attributes is less statistically 
significant). The most statistically 
significant attribute effect comes 
from the size of dwellings, as 
measured by number of rooms 
where larger dwellings are found to 
take significantly longer to sell.  
 
The market buoyancy measure, 
dQik

om/Qik
om , seems to work well in 

that it is one of the most 
statistically significant variables in 
the model. The estimated 
coefficient and standard error tend 
to vary with the various 
specifications of the over pricing 
measure, suggesting a degree of 
multicolinearity. In particular, the t-
value falls substantially, when the 
overpricing measure is corrected 
for expected house price inflation. 
This is not surprising since the two 
will obviously be related (houses 
will sell more quickly if prices are 
expected to rise).  
 

Comparing Overpricing 
Measures 
Consider first survival regression 
(1). This has the unadjusted 
measure of overpricing computed 
as asking price less expected 
selling price all over asking price, 
where expected sale price is 

derived from a simple hedonic 
without spatial or temporal 
interactive terms. This measure 
has the least significant coefficient 
of all the measures (t value = 
0.664; 95% CI = [-.036, .064]). 
When this same measure is 
calculated relative to γk

* (the 
average bid-offer spread in area k, 
where k is again defined as those 
properties within a 3km radius of 
property i) it can be seen from 
regression (2) that its t value rises 
to 2.385 (95% CI =[.002, .012]). 
 
Regression (3) includes the same 
measure of overpricing as 
regression (2) but also includes, 
θ.

ikγσ , the interaction the variance 
of proportional bid-offer spreads in 
area k. This variable is highly 
significant and negative in all three 
of the regressions which include it 
(3, 5, and 7), suggesting that the 
impact of overpricing is mitigated 
by uncertainty about the current 
local bidding convention.  
 
Regressions (4) to (9) use the MFP 
estimation procedure to calculate 
the expected sale price. Although 
the size of the overpricing effect 
tends to be larger when this 
approach is used, the standard 
error rises also, the net result 
being slightly lower t-values 
compared with the simple hedonic 
formulation used in regressions (2) 
and (3). This finding suggests that 
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the hedonic method used to 
compute the expected selling price 
used in the computation of 
overpricing should perhaps have a 
fairly simple formulation reflecting 
the bounded rationality of buyers 
and sellers. Using a sophisticated 
estimation procedure effectively 
assumes that buyers and sellers 
are able to make similarly 
sophisticated estimates of the 
property’s market value. If complex 
hedonics are used when in fact 
valuers, buyers, sellers and their 
respective agents tend to use 
relatively simple rules of thumb 
regarding the expected sale price, 
then such an approach, while 
producing more accurate hedonic 
estimates, will actually lead to less 
precise measures of overpricing. 
Put another way, overpricing will 
only affect time on the market if 
buyers and sellers realize that the 
property is overpriced because it is 
perceived ex ante to be over 
priced, rather than because of 
actual ex post discrepancies 
between asking and sale prices.  
 
Regressions (6) to (9) control for 
time on the market when 
predicting the market value of the 
property by including TOM in the 
hedonic regression (see Table 5 – 
note that the MFP regression 
without TOM used to compute θ in 
regressions (4) and (5) is not 
presented). When computing the 

predicted values, the value for 
TOM is set equal to 46 days – the 
average marketing time in the 
West End. This results in a slight 
improvement in the t ratios of (6) 
and (7) compared with (4) and (5) 
and a small rise in the size of the θ 
coefficient. 
 
The final two survival regressions, 
(8) and (9), introduce a house 
price inflation expectations 
correction, πk

*, to the definition of 
overpricing. πk

* is computed as the 
proportionate increase in average 
sale prices in area k in 60 days 
prior to the property coming on the 
market. It is a simple raw average 
of all sales in the area and does 
not control for attribute variation. 
The expected selling price, Pik

S*, 
used in the computation of 
overpricing, is estimated as the 
predicted value from the hedonic 
regression multiplied by (1+ πk

*): 
Pik

S* = (1+πk
*) Pi

H#  
Comparing (8) and (9) with (6) and 
(7) it can be seen that the 
expectations adjustment has 
slightly reduced the t values and 
coefficients for the overpricing 
measures. It has also substantially 
reduced the t values on the market 
buoyancy measure suggesting a 
degree of multicolinearity. This is 
not surprising since the change in 
properties on the market will be 
correlated with price changes. As 
such the buoyancy variable may 
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already be capturing house price 
inflation expectations. 
  

Conclusion 
In this paper I have argued that 
the interpretation of existing 
measures of overpricing is 
ambiguous because of a number of 
conceptual and measurement 
deficiencies inherent in these 
measures. This paper has 
attempted to reason through what 
the appropriate definition should 
be in a sealed-bid context.  
Evidence has been found for a 
positive correlation between 
overpricing and time on the 
market. Measuring overpricing 
relative to the local average bid-
offer spread increased by a 
considerable margin the 
significance of the overpricing 
variable in a log-normal survival 
model of TOM. The improvement 
was surprisingly large given that 
the paper has argued that stripping 
out the spurious time-series 
correlation between TOM and the 
average bid-offer spread would 
ameliorate any gains due to 
advances in measurement 
precision. The variance of local bid-
offer spreads also proved to be 
highly statistically significant in all 
the survival regressions and this 
confirmed the proposition that the 
effect of overpricing would be 
mitigated by the degree of 

uncertainty regarding whether a 
property was truly overpriced.  
 
Interestingly, improvements to the 
hedonic method used to compute 
the expected market price did not 
translate into corresponding 
improvements in the statistical 
significance of the overpricing 
variable. This perhaps suggests 
that market agents base their 
estimation of the market value of a 
property on relatively simple 
calculations. Attempts to capture 
house price inflation expectation 
effects did not prove successful. 
Future versions of the paper will 
attempt to construct more robust 
measures of expected house price 
inflation (based on constant quality 
price change, for example). 
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Table 6 Log-Normal Survival Models of Time on the Market 
NB These regressions model the “survival on the market” of properties for sale, so positive coefficients 
indicate that a variable increases survival time (i.e. increases time on the market) whereas negative 
coefficients indicate that a variable reduces survival time (i.e. reduces time on the market). 
 T3iA T3iiA T3iiB T3iiiA T3iiiB T3ivA T3ivB T3vA T3vB 
 (1) 

Simple 
hedonic 

(2) 
Simple 
hedonic 

(3) 
Simple 
hedonic

(4) 
MFP 

hedonic

(5) 
MFP 

hedonic

(6) 
MFP 

hedonic 
with 
TOM 

control

(7) 
MFP 

hedonic 
with 
TOM 

control

(8) 
MFP 

hedonic 
with 
TOM 

control 
&  π* 
adj. 

(9) 
MFP 

hedonic 
with 
TOM 

control 
&  π* 
adj. 

 

θ 
unadjusted 

  γ*   γ* 
var(γi) 

  γ*   γ* 
var(γi) 

γ*   γ* 
var(γi) 

γ* 
 

π* 

  γ* 
var(γi) 
  π* 

          
θ 0.017 0.007 0.045 0.010 0.099 0.013 0.101 0.009 0.092 
 (0.664) (2.385) (4.975) (1.510) (4.212) (1.897) (4.410) (1.447) (4.264)
θ.

ikγσ    -0.356  -0.608  -0.608  -0.572
   (-4.449)  (-3.946)  (-4.034)  (-4.017)
dQik

om/Qik
om 0.098 0.095 0.091 0.116 0.115 0.116 0.115 0.103 0.101 

 (2.703) (2.639) (2.533) (3.188) (3.168) (3.198) (3.176) (2.857) (2.815)
house -0.168 -0.173 -0.174 -0.170 -0.183 -0.170 -0.185 -0.168 -0.180 
 (-4.494) (-4.625) (-4.664) (-4.526) (-4.859) (-4.536) (-4.907) (-4.500) (-4.814)
bedrooms 0.103 0.102 0.102 0.102 0.102 0.101 0.102 0.102 0.102 
 (6.783) (6.750) (6.773) (6.690) (6.702) (6.660) (6.703) (6.706) (6.731)
views -0.106 -0.101 -0.102 -0.103 -0.103 -0.102 -0.102 -0.096 -0.096 
 (-2.014) (-1.932) (-1.947) (-1.953) (-1.963) (-1.945) (-1.953) (-1.833) (-1.833)
driveway -0.081 -0.082 -0.090 -0.076 -0.089 -0.076 -0.088 -0.077 -0.086 
 (-1.052) (-1.067) (-1.166) (-0.990) (-1.154) (-0.982) (-1.147) (-1.009) (-1.122)
mature -0.186 -0.182 -0.180 -0.182 -0.169 -0.181 -0.170 -0.180 -0.169 
 (-1.849) (-1.811) (-1.794) (-1.813) (-1.692) (-1.809) (-1.696) (-1.806) (-1.694)
garden_d -0.090 -0.095 -0.089 -0.090 -0.091 -0.089 -0.090 -0.088 -0.090 
 (-3.270) (-3.446) (-3.262) (-3.247) (-3.296) (-3.224) (-3.261) (-3.220) (-3.279)
gch_d -0.018 -0.014 -0.024 -0.017 -0.020 -0.018 -0.020 -0.012 -0.014 
 (-0.689) (-0.527) (-0.929) (-0.672) (-0.764) (-0.685) (-0.790) (-0.446) (-0.543)
alarm -0.121 -0.120 -0.126 -0.120 -0.120 -0.118 -0.120 -0.118 -0.119 
 (-2.299) (-2.270) (-2.387) (-2.261) (-2.279) (-2.233) (-2.263) (-2.242) (-2.275)
bay -0.046 -0.037 -0.045 -0.042 -0.039 -0.042 -0.038 -0.048 -0.044 
 (-1.789) (-1.467) (-1.799) (-1.646) (-1.531) (-1.661) (-1.520) (-1.885) (-1.758)
y1999q4 -0.408 -0.411 -0.404 -0.401 -0.387 -0.399 -0.385 -0.354 -0.337 
 (-5.727) (-5.773) (-5.698) (-5.650) (-5.451) (-5.627) (-5.423) (-4.968) (-4.734)
y2000q1 -0.205 -0.224 -0.242 -0.189 -0.188 -0.190 -0.193 -0.151 -0.160 
 (-2.502) (-2.723) (-2.957) (-2.293) (-2.285) (-2.308) (-2.355) (-1.840) (-1.948)
y2000q2 -0.412 -0.402 -0.410 -0.416 -0.405 -0.415 -0.403 -0.370 -0.361 
 (-5.377) (-5.249) (-5.374) (-5.441) (-5.296) (-5.426) (-5.280) (-4.844) (-4.735)
y2000q3 -0.481 -0.471 -0.484 -0.468 -0.446 -0.466 -0.444 -0.424 -0.405 
 (-5.339) (-5.231) (-5.386) (-5.185) (-4.942) (-5.160) (-4.925) (-4.704) (-4.496)
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y2000q4 -0.405 -0.391 -0.401 -0.424 -0.418 -0.423 -0.416 -0.385 -0.376 
 (-4.051) (-3.914) (-4.028) (-4.236) (-4.183) (-4.221) (-4.159) (-3.856) (-3.776)
y2001q1 -0.436 -0.424 -0.440 -0.432 -0.426 -0.431 -0.424 -0.386 -0.371 
 (-5.123) (-4.989) (-5.188) (-5.092) (-5.032) (-5.081) (-5.017) (-4.558) (-4.391)
y2001q2 -0.630 -0.621 -0.618 -0.636 -0.617 -0.634 -0.615 -0.590 -0.573 
 (-7.818) (-7.704) (-7.693) (-7.892) (-7.663) (-7.871) (-7.642) (-7.329) (-7.129)
y2001q3 -0.646 -0.633 -0.634 -0.642 -0.636 -0.640 -0.633 -0.593 -0.585 
 (-8.648) (-8.465) (-8.508) (-8.547) (-8.483) (-8.518) (-8.443) (-7.899) (-7.802)
y2001q4 -0.582 -0.565 -0.569 -0.579 -0.564 -0.577 -0.561 -0.534 -0.518 
 (-6.507) (-6.318) (-6.383) (-6.446) (-6.281) (-6.423) (-6.250) (-5.949) (-5.786)
y2002q1 -0.739 -0.736 -0.721 -0.755 -0.730 -0.753 -0.727 -0.704 -0.673 
 (-10.949) (-10.901) (-10.704) (-10.725) (-10.352) (-10.695) (-10.313) (-9.980) (-9.518)
y2002q2 -0.726 -0.713 -0.700 -0.725 -0.673 -0.722 -0.671 -0.674 -0.623 
 (-10.928) (-10.707) (-10.540) (-10.936) (-9.984) (-10.898) (-9.965) (-10.149) (-9.238)
y2002q3 -0.765 -0.759 -0.736 -0.765 -0.729 -0.762 -0.727 -0.717 -0.682 
 (-12.040) (-11.967) (-11.594) (-12.075) (-11.431) (-12.026) (-11.390) (-11.283) (-10.658)
y2002q4 -0.592 -0.582 -0.570 -0.591 -0.567 -0.589 -0.564 -0.543 -0.518 
 (-9.490) (-9.308) (-9.136) (-9.490) (-9.071) (-9.443) (-9.020) (-8.695) (-8.265)
y2003q1 -0.592 -0.587 -0.567 -0.592 -0.561 -0.589 -0.559 -0.545 -0.515 
 (-9.012) (-8.941) (-8.642) (-9.042) (-8.538) (-9.002) (-8.498) (-8.302) (-7.813)
y2003q2 -0.723 -0.715 -0.696 -0.725 -0.693 -0.722 -0.690 -0.676 -0.642 
 (-10.993) (-10.857) (-10.589) (-11.033) (-10.490) (-10.982) (-10.445) (-10.269) (-9.704)
y2003q3 -0.653 -0.644 -0.626 -0.651 -0.608 -0.649 -0.605 -0.604 -0.563 
 (-10.349) (-10.185) (-9.927) (-10.347) (-9.530) (-10.303) (-9.491) (-9.567) (-8.816)
y2003q4 -0.588 -0.582 -0.558 -0.586 -0.540 -0.584 -0.538 -0.542 -0.492 
 (-8.726) (-8.636) (-8.286) (-8.727) (-7.945) (-8.689) (-7.908) (-8.065) (-7.226)
y2004q1 -0.371 -0.363 -0.345 -0.366 -0.316 -0.363 -0.313 -0.375 -0.332 
 (-4.963) (-4.855) (-4.612) (-4.903) (-4.175) (-4.866) (-4.136) (-4.893) (-4.311)
Constant 3.909 3.884 3.901 3.887 3.871 3.882 3.866 3.841 3.825 
 (66.978) (66.674) (67.023) (66.639) (66.375) (66.463) (66.205) (65.440) (65.175)
/ln(σ) -0.378 -0.379 -0.382 -0.381 -0.383 -0.381 -0.384 -0.387 -0.389 
 (-30.603) (-30.668) (-30.912) (-30.603) (-30.796) (-30.619) (-30.821) (-30.994) (-31.195)

N 
     

3,275  
     

3,275  
     

3,275 
     

3,228 
     

3,228 
     

3,228 
     

3,228  
     

3,212  3,212 

log-likelihood 
-

3408.64 
-

3406.02 
-

3396.16
-

3350.87
-

3343.10
-

3350.21
-

3342.09 
-

3315.55 
-

3307.50
χ2 332.30 337.54 357.27 336.96 352.49 338.28 354.51 310.18 326.28
AIC 6879.29 6874.04 6856.31 6763.74 6750.20 6762.42 6748.19 6693.10 6679.00
σ 0.69 0.69 0.68 0.68 0.68 0.68 0.68 0.68 0.68 
Figures in brackets are t-ratios. Area k is defined as those properties within a 3km radius of property i. 
θ is the degree of overpricing; θ.

ikγσ is the interaction of the overpricing variable with the standard deviation of the 

local bid-offer spreads. dQik
om/Qik

om is a measure of market buoyancy, computed as the change in the quantity of 
properties on the market in area k, as a proportion of the number of properties on the market before the change. 
The period used to compute dQik

om/Qik
om is the 60 day period prior to property i coming onto the market. π* is the 

local house price inflation expectations measure, computed as the proportionate increase in average sale prices in 
area k in the previous 60 days. 
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