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Expectations & Support:

1. Independent learning: 
– this is a PG course and a degree of independent 

learning is assumed. 
– do the reading, attend labs, review the lectures, make 

use of the computer labs/online help in your own time.
2. Lab Overview & Feedback:

– Please feedback to the tutors & Class Reps how you 
think that is going, how it could be improved.

– Tutors and Class Reps will then report back to me how 
things are going each week. 

3. Talk to tutors if you are struggling:
– Let the tutors know if you are struggling (assuming you 

have done the reading, attended labs etc.)
– Tutors cannot guarantee extra support, but it might be 

possible to arrange extra tutorials etc. 



4. Departmental Support:
– Struggling students should enquire whether their own dept has support to 

offer.
– All the grad school courses are only intended to constitute a generic training 

component; 
– Individual depts & supervisors should supplement with additional training & 

support as necessary. 
5. Support from Maths Advisor Shazia Ahmed, University’s Maths 

Adviser:
– If you have gone through steps 1 to 4, Shazia has agreed to run one-on- 

one sessions with students that are struggling with particular mathematical 
or statistical concepts (though she has made it clear that she cannot advise 
on SPSS problems, nor will she do the assignment for you). 

– Students who have particular problems in this regard can contact her 
directly: Shazia Ahmed, Maths Adviser, Student Learning Service, McMillan 
Reading Room, Tel: 330 5631 Fax:  330 8063

6. Tutor of Last Resort:
– Students who have gone through steps 1 to 5 above, and who still feel they 

are not receiving enough support, can email me directly 
– I will try to arrange individual or small group meetings for people who have 

tried all other avenues.
• You will need to demonstrate that you have gone through steps 1 to 5.



Aims & Objectives

• Aim
– To introduce the concept of confidence intervals. 

• Objectives
– By the end of this session, students should be able to: 

• Understand the intuition behind confidence intervals;
• calculate large and small sample confidence intervals for one 

mean.



Plan

• 1. Intuition Behind CIs
a) All normal curves related ⇒ z distribution
b) Converting x to z values
c) Applying z to sampling distributions
d) 5 steps of logic behind CI

• 2. Three steps of Confidence Interval 
Estimation

• 3. Large Sample Confidence Interval for the 
mean

• 4. Small Sample Confidence intervals for the 
Population mean



1. Intuition behind CIs

a) All normal curves related ⇒ z distribution
b) Converting x to z values
c) Applying z to sampling distributions
d) 5 steps of logic behind CI



a) All normal curves related ⇒ z distribution

• We have said that there are an infinite 
number of poss. normal distributions 
– but they vary only by mean and S.D.

• so they are all related -- just scaled versions of each 
other

• a baseline normal distribution has been 
invented: 
– called the standard normal distribution
– has zero mean and one standard deviation
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Standard Normal Curve

• we can standardise any observation from a normal 
distribution 
– I.e. show where it fits on the standard normal distribution by:

• subtracting the mean from each value and dividing the result by 
the standard deviation.

• This is called the z-score = standardised value of any normally 
distributed observation.

σ
μ−

= i
i

xz Where μ = population mean

σ = population S.D.



• Areas under the standard normal curve between different z-scores are equal 
to areas between corresponding values on any normal distribution

• Tables of areas have been calculated for each z-score, 
– so if you standardise your observation, you can find out the area above or below 

it.

– But we saw earlier that areas under density functions correspond to 
probabilities:

• so if you standardise your observation, you can find out the probability of 
other observations lying above or below it.



b) Converting x to z values:

Example:
• Suppose that the survival time of brain tumour patients following 

diagnosis is found to be normally distributed. You have records on all 
such diagnoses (I.e. the population).   The average survival time is 160 
days with a standard deviation of 20 days. Suppose you want to find 
the proportion of brain tumour patients  who survive between 135 
and 175 days.
– How would you do that given:

σ
μ−

= i
i

xz
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Brain Tumour Example cont’d:

• Suppose that the survival time of brain tumour patients following diagnosis is 
found to be normally distributed. You have records on all such diagnoses (I.e. 
the population).   The average survival time is 160 days with a standard 
deviation of 20 days. Find the proportion of brain tumour patients  who 
survive between 135 and 175 days.

– (i) Find z scores for x1 = 135 and x2 = 175:
• z1 = (135 - 160)/20 = -1.25;  and z2 = (175 - 160)/20 = 0.75
• P(135 < days < 175) = P(-1.25 < z < 0.75)

– (ii) Find area A under z curve where: A = P(z < -1.25) = 0.1056
– (iii) Find area B under z curve where: B = P(z < 0.75) =  0.7734
– (iv) take area A from area B: C = B-A = P(-1.25 < z < 0.75)

C = P(135 < days < 175) = P(-1.25 < z < 0.75) 
= B - A
= 0.7734 - 0.1056
= 0.6678

σ
μ−

= i
i

xz
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But what about non-normal variables?

• Q/ Suppose we don’t know the shape of the 
population distribution of income but we want to 
estimate the population mean. 
– We usually can only afford to take one sample (e.g. 

interview 100 people).  
– But knowing something about the distribution of the 

sample means (I.e. the CLT) means that we can say 
something about how close our sample mean is likely to 
be to the population mean.



c) Applying z-score transformation to sampling distributions:

• The formula we learned last week for applying z scores to sampling 
distributions was:

x

i
i

xz
σ

μ−
=

xii zx σμ −=

Now, if we rearrange this formula we get:

So if the population mean is unknown, we can then decide on 
the level of confidence we want, and calculate z to give an 
interval for the unknown population mean.

score z
means sample  theall ofdeviation  standard 

mean sample
mean population

:where

=
=

=
=

i

x

i

z

x
σ

μ



E.g. sample mean income = £200, s.d. of sample means = 10, what is the 95% confidence for the population mean?

μ

We want to know where 95% of sample means lie: 

we can then say that we are 95% sure the population mean 
will lie between £? and £??

We can find out where 95% of sample means lie because we 
know that the sample mean is normally distributed around the 
population mean...

x

95%

???



… and this means we can use z

z

6.19200£
1096.1200£

±=
×±=

−=

μ
μ

σμ xii zx

95%

z*

1.96

-z*

-1.96

x
£219.6£180.4

I.e. 95% of samples will 
have means that lie 
between £180.4 and 
£219.6

95%

De-
Standardise

Find the z-scores that 
bound the central 95%, 
then convert these z- 
scores to sample means to 
find the central 95% of 
sample means.



d) Confidence Intervals are based on 5 steps of logic: 

• (1) CLT says that: sample mean  is normally 
distributed. We call the standard deviation of the this 
distribution the “SE of the mean”

• (2) 95% Rule: for any normally distributed variable, 
95% of observations lie within 2 standard deviations 
of the mean.

• (3) Statements (1) & (2) imply that:
– 95% of samples will have means that lie within 2 SEs 

of μ
• (4) ⇒ μ is within 2 SEs of the sample mean

– to say that we are 95% sure that the sample mean lies within 2 
SEs of μ is the same as saying that we are 95% sure that μ is 
within 2 SEs of the sample mean.

• (5) So 95% of all samples will capture the true 
population mean in the interval:

SE2      toSE2 +− xx



• (5) So 95% of all samples will capture the 
true population mean in the interval:

• Put another way, there are only 2 
possibilities: 

• Either the interval sample mean ± 2SE contains μ
• Or our sample was one of the few samples (I.e. one 

of the 5%) for which the sample mean is not within 
2SE of μ

SE2      toSE2 +− xx



Normal distribution 95% rule:

• E.g. Suppose SE of the  mean = £10 for repeated samples 
of income.  

• Because the sampling distribution of mean income is normal 
(assuming large sample sizes) this means 95% of mean 
incomes lie between ±

 
2x£10 of the population mean.

• So if the population mean income is £200, we know that in 
95% of samples, the sample mean will lie between... 

… £180 and £220.
• We also know that in 95% of samples, the population 

mean will lie within £20 of the sample mean.



Algebraic proof that the statement: 
the sample mean lies within 2 SEs of μ

 is the same as saying that 
μ is within 2 SEs of the sample mean.

20£20£
20£20£

20£20£
20£20£

20£20£

+≤≤−
−≥≥+

+−≤−≤−−
≤−≤−

+≤≤−

xx
xx

xx
x

x

μ
μ

μ
μ

μμ Sample mean lies within: μ±£20

μ
 

lies within: sample mean ±£20



2. Three steps of Interval estimation for μ: the large sample case

• 1. Choose the appropriate formula and decide on the 
level of confidence (e.g. 95%): 

• 2. Find the value for z* such that:
• Prob(-z* ≤

 
z ≤

 
z*) = Confidence level (e.g. 95%)

• 3. Calculate the confidence interval
• substitute your values for the sample mean, z* and the 

standard error of the mean into the formula.

xii zx σμ ±=



Amazing as the Central Limit Theorem is, it has at least 2 problems:

• 1. We need to know the 
standard error of the mean
– i.e. the average deviation of the 

sample mean from sample to 
sample 

• 2. CLT depends on the sample 
size being large 



Let’s look at the first problem in the context of sampling 
distributions:

xσ

• 1. We need to know the standard error of 
the mean
– i.e. the average deviation of the sample mean 

from sample to sample, denoted as:

– But we only have one sample. How might we find 
a way of estimating SE(mean)?



Approximating the S.E. of the mean:

• Q/ Do you think that the standard deviation within the sample 
you have selected will tell us anything about the SE of the 
mean?
– I.e. is the spread of any one sample and the spread of all sample 

means related?
• A/ Yes, we would expect the variability of the possible sample 

means to be related to the variability of the population, which in 
turn is estimated by our sample s.d.



– This is because the mean and s.d. will be closer to mean and s.d. of 
population the larger n

– So the variability of the sample mean decreases as the sample size 
increases

– more specifically,

– I.e. provided n > 30, we can use:
• sample standard deviation  ÷

 

square root of sample size
as an approximation for SE(mean) 

  as  ∞→→= n
n
s

nx
σσ

Large sample is “better”
 

than small sample



• So:
• Usually we do not know the standard error of the mean.  
• A simple approximation of the standard error of the mean can be 

found by dividing the sample standard deviation by the square 
root of the sample size:

• So, for large samples, we can create confidence intervals for the 
population mean from the sample mean and s.d. using the following 
formula:

n
szxi

*±=μ

x  σ≈
n
s



3. Three steps of Interval estimation for μ: the large sample case

• 1. Choose the appropriate test statistic and decide on the level 
of confidence (e.g. 95%): 

• 2. Find the value for z* such that
• Prob(-z* ≤

 

z ≤

 

z*) = Confidence level (e.g. 95%)
• 3. Calculate the confidence interval by substituting your values 

for the sample mean, z* and your approximation for the standard 
error of the mean (s/√n).

n
szxi

*±=μ



Example:
• Suppose your area of research is the disappearance of 

thousands of civil servants and other workers during Joseph 
Stalin’s Great Purge in Soviet Russia 1936-38.  One of the 
questions you are interested in is the average age of the 
workers when they disappeared. Your thesis is that Stalin felt 
most threatened by older, more established ‘enemies’, and so 
you anticipate their average age to be over 50. Unfortunately, 
you only have access to 506 records on the age of individuals 
when they disappeared. 

• You have calculated the average age in this sample to be 56.2 
years, which would appear to confirm your thesis. The standard 
deviation of your sample was found to be 14.7 years. Assuming 
that your 506 records constitute a random sample from the 
population of those who disappeared (a questionable 
assumption?), calculate the 95% confidence interval for the 
population mean age.  

• Does your expected value for the population average age fall 
below the 95% confidence interval? If so, what does this imply?



Answer:

n = 506
xbar = 56.2
s = 14.7

• 1. Choose the appropriate formula and decide on the 
level of confidence: 

• 2. Find the value for z* such that: 
Prob(-z* < z < z*) = 95% 

n
szxi

*±=μ
c = 0.95





look up 0.0250 in the body of the z table which tells us that  the value for –z* is 
1.96:





Alternatively we could use the zi_gl_zp syntax for finding the central 95%:

zi_gl_zp p = (0.95).
Value of zi such that Prob(-zi < z < zi)  
= PROB, when PROB is given

ZIL        ZIU       PROB
-1.95996    1.95996     .95000



3. Calculate the CI by substituting your values into the formula:

• error associated with using the sample mean as an estimate 
of the population mean =1.281 years.

• I.e. we are 95% certain that the population age of missing 
workers was between 54.92 years and 57.481 years.  

• Note that this range is clearly above our guesstimate of the 
population mean of 50 years.

281.12.56   
506

7.1496.12.56   

*

±=

×±=

±=
n
szxiμ



CI_L1M Large sample CI for one mean (M&M pp.417-424) .

• We could alternatively use the macro:
CI_L1M  n=(506)   x_bar=(56.2)   s=(14.7)    c=(0.95).

Large sample confidence interval for the population mean
N      X_BAR        ZIL         SE        ERR      LOWER      UPPER

506.00000   56.20000   -1.95996     .65349    1.28083   54.91917   57.48083



4. Small Sample CIs

• Now let’s look at the second problem of the 
CLT:

• It depends on the sample being large
• What if our sample is small?



Student’s t-distribution 

• We mentioned earlier that we can approximate the 
standard error of the mean using s / √n

• However, strictly speaking, when we substitute for 
the SE of the mean in this way, the statistic does not 
have a normal distribution:
– its distribution is slightly different to the normal distribution 

and is called the ‘t-distribution’



• Student’s t-distribution varies according to sample size
– I.e. a different distribution for each sample size

• The spread is slightly larger than the normal distribution 
due to the substitution of s for σ.
– but because s → σ as n↑, the t-distribution → normal as n↑



Assumption and implication:

• The t-distribution assumes that the variable 
in question is normally distributed.

• In reality, few variables are normal, but the 
effect of non-normality in the original variable 
lessens as the sample size increases 
– as n increases, the Central Limit Theorem kicks in.



Three steps of Interval estimation for μ: the small sample case

• 1. Choose the appropriate formula and decide on the level of 
confidence (e.g. 95%): 

• 2. Find the value for t* such that:
• Prob(-t* ≤

 
t ≤

 
t*) = Confidence level (e.g. 95%)

• 3. Calculate the confidence interval by substituting your values 
for the sample mean, t* and your approximation for the standard 
error of the mean (s/√n).

n
stx *±=μ



• So when the sample size is small, the variable is normal:
– we always use the Student t-distribution.

• when the sample size is large and the variable is non-normal :
– we can use the z or t distributions.

• But when the sample size is small, and the variable is non- 
normal:
– we can’t use the t-distrubution (or we do so with caution!)

• => Resort to non-parametric methods (not covered in this course).



Macro syntax for Small Sample CI: 

e.g. 95% CI for average age of graduation (n = 15, s = 7years)

CI_S1M n=(15)         x_bar=(22.2)      s=(7)        c=(0.95).

Small sample confidence interval for the population mean
N      X_BAR        TIL         SE        ERR      LOWER      UPPER

15.00000   22.20000   -2.14479    1.80739    3.87647   18.32353   26.07647



Summary:

• 1. Introduction-
• Material covered so far
• Intuition behind CIs

• 2. Three steps of CI Estimation
• 3. Large Sample CI for the mean

• CI_L1M    n=(?)    x_bar=(?)    s=(?)     c=(?).

• 4. Small Sample CI for the mean
• CI_S1M    n=(?)    x_bar=(?)    s=(?)     c=(?).



Proportion 
(Categorical 
Data)

Mean
(Continuous 
Data)

Confidence
 Intervals

1 population
2 populations

1 sample mean
2 Indpendent 
sample means
2 means from 
Match-Pairs 
(e.g. before vs after)
3+ Independent 
sample means
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