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5 Omitted and Irrelevant variables

	Reading:

Kennedy (1998) “A Guide to Econometrics”, Chapters 5,6,7 and 9

Maddala, G.S.  (1992) “Introduction to Econometrics” chapter 12

Field, A. (2000) chapter 4, particularly pages 141-162.

Aim:

The aim of this section is to consider the implications of omitted and irrelevant variables.

Objectives:

By the end of this chapter, students should be aware of the basic assumptions underpinning regression analysis and the implications, diagnosis and cure for omitted and irrelevant variables.
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5.1 Introduction

When it comes to the actual construction of a regression model, there is little that an analyst spends more of his time wrestling with than the correct selection of variables to be included in the model. This chapter considers both the implications of including too few (“omitted” variables) and too many (“irrelevant” variables) explanatory variables.  Before we launch into an examination of these two important topics, it’s probably worth reminding ourselves of the assumptions that underpin regression:

5.2 Diagnosis and Cure: 

For estimation of a and b to be unbiased and for regression inference to be reliable, a number of assumptions have to hold:

1. Equation is correctly specified:

(a) Linear in parameters (can still transform variables)

(b) Contains all relevant variables

(c) Contains no irrelevant variables

(d) Contains no variables with measurement errors

2. Error Term has zero mean

3. Error Term has constant variance

4. Error Term is not autocorrelated

I.e. correlated with error term from previous time periods

5. Explanatory variables are fixed

observe normal distribution of y for repeated fixed values of x

6. No linear relationship between RHS variables 

I.e. no “multicolinearity”
It is important, then, before we attempt to interpret or generalise our regression results that we attempt to check whether these assumptions are valid when applied to our model.  Fortunately a number of diagnostic tests/methods have been developed to help us.  They are tests that are meant to “diagnose” problems with the models we are estimating.  Least squares residuals play an important role in many of these routines -- some of which we have already looked at (F-tests of parameter stability, for example, are based on the residual sum of squares).   

Once we have tested for a particular violation of the regression assumptions, we need to understand what the consequences might be, what cures are available, and to weight up whether the negative side effects of the cure outweigh the benefits.  In this lab session we shall be looking at violations 1(b), (c), (d) and 2.

1. What do you understand by the terms “bias” and “efficiency”?

2. What do we mean when we say that OLS estimates are BLUE?

5.3 Omitted variables  [violation 1(b)]

5.3.1 Consequences:

If there are variables not in our regression model that should be, then the OLS estimator of the coefficients of the remaining variables will be biased.  If we have one included explanatory variable and one (inappropriately) excluded explanatory variable, the scale of the bias will be as follows:

      bias    = 
(coefficient of the excluded variable) ( (regression coefficient in a regression of the excluded variable on the included variable)

Where we have several included variables and several omitted variables, the bias in each of the estimated coefficients of the included variables will be a weighted sum of the coefficients of all the excluded variables. The weights are obtained from (hypothetical) regressions of each of the excluded variables on all the included variables.

Also, inferences based on these estimates will be inaccurate because estimates of the standard errors will be biased and so t-statistics produced in the SPSS output will not be reliable. Where there is an excluded variable, the variance of coefficients of variables that are included will actually be lower than if there were no excluded variables. However, this might not feed through to lower estimated standard errors.

5.3.2 Diagnostic Tests:

(i) Adjusted R2
The most obvious sign that explanatory variables are missing is if the Adjusted R2 is low.  However, this can also be caused by incorrect functional form (e.g. non-linearities), so you could actually have all the relevant variables in the equation, and still have a low Adjusted R2.

(ii) t-values

If the omitted variable is known/measurable, you can enter the variable and check the t-value to see if it should be in.  If the t-value is high (significance level small) then there is a good chance that the variable should be in the model.

(iii) Ramsey’s Regression Specification Error Test (RESET) for omitted variables:

Ramsey (1969) suggested using ŷ (the predicted values of the dependent variable) raised to the powers of 2, 3, and 4 (i.e.ŷ2, ŷ 3 and ŷ 4) as proxies for the omitted and unknown variable z:

RESET test procedure:
a. Regress the dependent variable y on the known explanatory variable(s) x:

y = b1 + b2x 

and obtain the predicted values, ŷ.

b. Regress y on x, ŷ 2, ŷ 3 and ŷ 4:

y = g1 + g2 x + g3 ŷ 2 + g4 ŷ 3 + g5 ŷ 4

c. Do an F-test on whether the coefficients on ŷ 2, ŷ 3 and ŷ 4 are all equal to zero.  

If the significance level is low and you can reject the null, then there is evidence of an omitted variable(s):

H0: no omitted variables

H1: there are omitted variables

5.3.3 Solutions: 

The most obvious solution is to include likely variables if they are available.  If not, we could attempt to use/create proxies for these variables.  As a general, rule it is better to include too many variables than have omitted variables because inclusion of irrelevant variables does not bias the OLS estimators of the slope coefficients, but one should be careful not to take this too far (see below).

Example 1: Explaining Loan to Value ratios

a. Regress the dependent variable y on the known explanatory variables and obtain the predicted values, ŷ.

Consider the following regression on mortgage borrowers, where LTV_l = log of the loan to value ratio; prev_OO is a dummy (= 1 if the borrower is a previous home owner); incbas¬l is the log of main income; incoth¬l is the log of other income; incoth_d is a dummy (=1 if the borrower has other income); age_25 = age of borrower less than 25 years dummy, age_35 = age of borrower 25 to 34 years dummy; age_45 = age of borrower  35 to 44 years dummy; age_55 = age of borrower 45 to 54 years; OO_ag_25 and OO_ag_35 are interactive terms for age_?? and prev_OO; hpreg_?? are area dummies; yr_?? are year dummies, and T_above is a tax penalty variable.

REGRESSION

  /MISSING LISTWISE

  /STATISTICS COEFF OUTS R ANOVA

  /CRITERIA=PIN(.05) POUT(.10)

  /NOORIGIN

  /DEPENDENT LTV_l  

 /METHOD=ENTER prev_oo 

incbas¬l incoth¬l incoth_d

age_25 age_35 age_45 age_55  

OO_ag_25 OO_ag_35 

hpreg_SE  hpreg_SW hpreg_EA 

yr_88 yr_89 yr_90 

T_aboveh 

/SAVE PRED(Y_HAT_1).
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b. Regress y on x, ŷ 2, ŷ 3 and ŷ 4
COMPUTE YH_1_SQ = Y_HAT_1 * Y_HAT_1.

EXECUTE.

COMPUTE YH_1_CB = Y_HAT_1 * Y_HAT_1 * Y_HAT_1.

EXECUTE.

COMPUTE YH_1_4 = Y_HAT_1 * Y_HAT_1 * Y_HAT_1 * Y_HAT_1.

EXECUTE.

REGRESSION

  /MISSING LISTWISE

  /STATISTICS COEFF OUTS R ANOVA

  /CRITERIA=PIN(.05) POUT(.10)

  /NOORIGIN

  /DEPENDENT LTV_l  

 /METHOD=ENTER prev_oo 

incbas¬l incoth¬l incoth_d

age_25 age_35 age_45 age_55  

OO_ag_25 OO_ag_35 

hpreg_SE  hpreg_SW hpreg_EA 

yr_88 yr_89 yr_90 

T_aboveh 

YH_1_SQ YH_1_CB YH_1_4.
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c. Do an F-test on whether the coefficients on ŷ 2, ŷ 3 and ŷ 4 are all equal to zero.  If the significance level is low and you can reject the null, then there is evidence of an omitted variable(s):

H0: no omitted variables

H1: there are omitted variables

From the Excel template:
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We can therefore reject the null that there are no omitted variables.  That is, we are in the unfortunate position of having omitted variables in our regression model.  In this instance, there is not a great deal that the researchers can do since all available relevant variables are included in the model.

3. Open up the MII_Lab3 data set. Run a regression of imports on exports and gdp.  Conduct a RESET test for omitted variables (NB SPSS will not enter all the transformed predicted values ŷ 2, ŷ 3 and ŷ 4 if they are perfectly correlated.  Don’t worry about this – just run the test based whatever can be entered in the third stage e.g. if only ŷ 4 can be entered, the number of restrictions in the F-test = 1).

4. Try running the same regression but use per capita variables instead (i.e. imports per capita, exports per capita, and gdp per capita).  Re-run the RESET test.  Is there any improvement?

5. Try including a number of additional variables in the regression which you think may explain imports per capita and re-run the RESET test.  Comment on your results.

5.4 Inclusion of Irrelevant Variables [violation 1(c)]

5.4.1 Consequences:

OLS estimates of the slope coefficient of the standard errors will not be biased if irrelevant variables are included.  However, the OLS estimates will not be “best” (cf BLUE) because the variance of b, the estimator of β, will be larger than if irrelevant variables had been excluded (i.e. the OLS estimate will not be as “efficient”). 

5.4.2 Diagnostic tests:

t-tests. 

Stepwise, Backward and Forward methods can be used, but use these with care: it is better to make reasoned judgements.  If you want to select one of these automated methods of variable selection simply click on the chosen method in the “Method” options box in the Linear Regression window. Alternatively, just amend the regression syntax accordingly (e.g. write “/METHOD=BACKWARD” rather than “/METHOD=ENTER” if you want to choose the Backward method of variable elimination).
ENTER Method.

This is the standard (and simplest) method for estimating a regression equation.  All variables for the block are added as a group for the equation.  If ENTER is used in a subsequent block, the variables for that block are added as a group for the final model for the preceding block.

REMOVE Method.

REMOVE is a method that takes variables out a regression analysis.  It is used in a block after the first.  The variables for the remove block, as a group, are taken out of the final model for the preceding block.

STEPWISE Method.

This method adds and removes individual variables according to the criteria chosen until a model is reached in which no more variables are eligible for entry or removal.  Two different sets of criteria can be used, either,

Probability of F.  This is the default method.  A variable is entered if the significance level of its F-to-enter is less than the entry value (adjustable), and is removed if the significance level is greater than the removal value (adjustable).  The entry value must be less than the removal value.

F-Value.  A variable is entered if its F value is greater than the entry value, and is removed if the F value is less than the removal value.  The entry must be greater than the removal value.

BACKWARD Method.

This method removes individual variables according to the criteria set for removal until a model is reached in which no more variables are eligible for removal.  (If no variables are in the equation from a previous block, they are entered as a group and then removed individually).

FORWARD Method.

This method adds individual variables, according to the criteria set for entry (see note on c) above), until a model is reached in which no more variables are eligible for entry.

F-tests 

For tests on the significance of groups of variables, use the F tests discussed in Lecture/Lab 4.

Adjusted R2
Compare adjusted R2 of model with the variable included with the adjusted R2 of the model without the variable.

Sequential regression:

This allows you to add in variables one at a time and consider the contribution it makes to the R2. To do this in SPSS:

· go to the Linear Regression window, enter the first block of independent variables

· then click Next and enter your second block of independent variables.

· Click on the Statistics button and tick the boxes marked Model Fit, and R squared change.  

· Click Continue 

Example of Sequential Regression Analysis:  

Suppose we want to know whether size of country (measured as pop = population) has an effect on the level of imports per capita.  We already know that Exports per Capita (xp_pc) and GDP per capita (gdp_pc) are important explanatory variables, and so we want to know what additional contribution pop will make to the explanation of mp_pc.

We can either use the Windows method described above, or we can simply make a couple of small changes to the regression syntax that we would normally use.  First add “change” to the statistics line (this tell SPSS to provide statistical output on the change in R square etc.).  Then add another /METHOD line at the end of the syntax (before the full stop) to include the pop variable.

So, if our original regression, without pop, is:

REGRESSION

  /MISSING LISTWISE

  /STATISTICS COEFF OUTS R ANOVA 

  /NOORIGIN

  /DEPENDENT mp_pc

  /METHOD=ENTER xp_pc gdp_pc.  

then our new “sequential” regression syntax is:

REGRESSION

  /MISSING LISTWISE

  /STATISTICS COEFF OUTS R ANOVA CHANGE
  /NOORIGIN

  /DEPENDENT mp_pc

  /METHOD=ENTER xp_pc gdp_pc  

  /METHOD=ENTER pop.
The output from the sequential regression syntax is as follows:
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The model summary tells us what the R-Square was before (0.886) and after (0.892) the variable was included.  The second row of the R-Square Change column tells us the increase in the R-Square (0.006) and the second row of the F-change Change column gives us the F-test value (27.084) from a test of whether this change is statistically significant (i.e. not just due to sampling error).  The second row of the Sig.-F change column gives us the significance level of this test (0.000).  

The Excluded Variables output box displays information about the variables not in the model at each step. “Beta In” is the standardized regression coefficient that would result if the variable were entered into the equation at the next step.  The t statistic and its significance value are used to test the null hypothesis that the regression coefficient is zero (or that there is no linear relationship between the dependent and independent variable). If the significance value is small (less than say 0.05) then the coefficient is considered significant.  The “Partial Correlation” is the correlation of each independent variable with the dependent variable after removing the linear effect of variables already in the model.  Thus, in this case, the correlation between mp_pc and pop, removing the linear effect of gdp_pc and xp_pc, is –0.224

5.4.3 Solutions:

Inclusion of irrelevant variables is not as severe as the consequences of omitting relevant variables, so the temptation is to include “everything but the kitchen sink”.  There is a balancing act, however, between bias and efficiency.  A small amount of bias may be preferable to a great deal of inefficiency.  

The best place to start is with good theory.  Then include all the variables available that follow from this theory and then exclude variables that add least to the model and are of least theoretical importance.

6. Try to build a model that explains inflation by inlcuding all the variables from the dataset in your regression and using the “Backward” method of elimination. How does your final model differ when you use the “Forwards” and “Stepwise” methods?  Of the three methods, which produces a model with the highest adjusted R2 in the final model?  Which final model do you think has the variables which make most sense theoretically in determining inflation?

7. Use F-tests to compare the first and final models for each of the three elimination models (e.g. backwards model 1 vs backwards model 9).  Comment on your results.

8. Now try developing a model of inflation using the sequential regression method, entering variables manually one by one as you see fit.  How does your final model compare with the automated procedures?

5.5 Errors in variables [violation 1(d)]

5.5.1 Consequences

“The Government are very keen on amassing statistics -- they collect them, add them, raise them to the nth power, take the cube root and prepare wonderful diagrams.  But what you must never forget is that every one of those figures comes in the first instance from the village watchman, who just puts down what he damn pleases” 

 (Stamp, 1929, pp. 258-9; quoted in Kennedy, p. 140)

Errors in the dependent variable are not usually a problem since such errors are incorporated in the disturbance term. Errors in explanatory variables are more problematic, however.  The consequences of measurement errors in explanatory variables depend on whether or not the variables mismeasured are independent of the disturbance term.  If not independent of the error term, OLS estimates of slope coefficients will be biased.

5.5.2 Diagnostic Tests:

No simple tests exist for general mismeasurement – correlations between error term and explanatory variables may be caused by other factors such as simultaneity.  Errors in the measurement of specific observations can be tested for, however, by looking for outliers (but again, outliers may be caused by factors other than measurement errors).  

A whole raft of measures and means for searching for outliers and measuring the influence of particular observations are available in SPSS (see Field “Discovering Statistics using SPSS chapter 4, p. 122 to 127 for a thorough overview).  Here is a good “rule of thumb” way to procede:

1. Always look at your data using scatter plots before running regression analysis.  You will spot likely outliers immediately.

2. To test whether they are truly outliers and whether they are significantly distorting your regression, select Studentised Residuals and Cooks Distances from the Save dialogue box in the Linear Regression window (alternatively you can simply finish your regression syntax with   /SAVE COOK SRESID .)
3. Run Descriptive Statistics on your studentised residual. If there are no outliers, the values of this variable will all be less than 3 in absolute terms. If there are any observations with a studentised residual less than –3 or greater than +3, then check the Cook’s distance (you can do this by ordering your data set by the studentised residual and looking at Cook’s distances for the highest and lowest values of the studentised residual).
4. Consider deleting observations where the Cook’s distance is greater than 1 and where there is a large absolute studentised residual (i.e. stud. res < -3 or stud. res. > 3).  If either the Cook’s distance is < 1 or the absolute studentised residual is small, then there is no need to delete the observation. Below is an example used in the house price model developed by the University of Glasgow for GSPC estate agents in Glasgow (text in highlighted in bold is the syntax to pay attention to):
*(1) Run regression on full sample:.

REGRESSION

  /DESCRIPTIVES MEAN STDDEV 

 /MISSING LISTWISE

  /STATISTICS COEFF OUTS R ANOVA

  /CRITERIA=PIN(.05) POUT(.10)

  /NOORIGIN

  /DEPENDENT sellingp

  /METHOD=ENTER 

hous_all flt1st_d  flt2nd_d flt3rd_d fltlwr_d fltmdr_d fltupp_d  CONVSN_D 

bundet_d bunsd_d bunter_d vildet_d vilsd_d othcot_d

bedrooms publicro garden_d garage_d 

 gch_d 

 nbathrms 

 needsupg spacious alarm mature bay  victrian 

luxury stone trad

  parking ensuite  views  

 conservy acre  driveway 

deprivtn cbd_glas

y1999q2 y1999q3 y1999q4 y2000q1 y2000q2 y2000q3 y2000q4 y2001q1 y2001q2

  y2001q3 y2001q4 y2002q1 y2002q2 y2002q3

 /SAVE COOK(NGLA_CK) SRESID(NGLA_SR)  .

VARIABLE LABELS NGLA_CK "Cook's Distance for West End regression".

VARIABLE LABELS NGLA_SR "Studentised Residual for West End regression".

EXECUTE.

(2) Outliers removed:.

TEMPORARY.

SELECT IF (NGLA_CK <= 1 and NGLA_SR > -2.5 and NGLA_SR < 2.5).

REGRESSION

  /DESCRIPTIVES MEAN STDDEV 

 /MISSING LISTWISE

  /STATISTICS COEFF OUTS R ANOVA

  /CRITERIA=PIN(.05) POUT(.10)

  /NOORIGIN

  /DEPENDENT sellingp

  /METHOD=ENTER 

hous_all flt1st_d  flt2nd_d flt3rd_d fltlwr_d fltmdr_d fltupp_d  CONVSN_D 

bundet_d bunsd_d bunter_d vildet_d vilsd_d othcot_d

bedrooms publicro garden_d garage_d 
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5.5.3 Solutions: 

If there are different measures of the same variable, present results for both to see how sensitive the results are to the different measures.  If there are clear outliers, examine them to see if they should be omitted or whether there is a typing/coding error. If you know what the measurement error is, you can weight the regression accordingly (see p. 141 of Kennedy) but since we rarely know the measurement error, this method is not usually much use.  In time series analysis there are instrumental variable methods to address particular types of errors in measurement (not covered in this course). If you know the variance of the measurement error, Linear Structural Relations methods can be used (see Kennedy), but again, these methods are rarely used since we don’t usually know the variance of measurement errors.

9. Look at the Studentised Residuals and Cook’s Distances in the regression of imports on exports and GDP.  Are there any cases which should be deleted?

10. Do this also for your preferred model of inflation.

5.6 Non-normal & Nonzero Mean Errors [violation 2]

5.6.1 Consequences:

Note that the OLS estimation procedure is such as to automatically create residuals whose mean is zero.  So we cannot formally test for non-zero mean residuals – we can only be aware of theoretical reasons why a particular model might theoretically produce non-zero means.  If the nonzero mean is constant (due, for example, to systematically positive or systematically negative errors of measurement in the dependent variable) then the OLS estimation of the intercept will be biased. If the non-zero mean is due to omitted relevant variables, then the error of the misspecified equation will not have a constant, zero mean.  This should be viewed as a violation of the first assumption of OLS, not the second.

We don’t need to assume normally distributed errors in order for OLS estimates to be BLUE.  However, we do need them to be normally distributed in order for the t-tests and F-tests to be reliable.

Non-normal errors are usually due to other mispecification errors (such as non-linearities in the relationships between variables).

5.6.2 Diagnostic Tests:

Shape of the distribution of errors can be examined visually by doing a histogram or normal probability plot: Normal probability plots (also called normal quantile plots) are calculated for a variable x as follows:
“1. Arrange the observed data values from smallest to largest.  Record what percentile of data each value occupies.  For example, the smallest observation in a set of 20 is at the 5% point, the second smallest is at the 10% point, and so on”

2. Do normal distribution calculations to find the z-score values at these same percentiles.  For example, z = -1.645 is the 5% point of the standard normal distribution, and z = -1.282 is the 10% point.

3. Plot each data point x against the corresponding z. If the data distribution is close to standard normal, the plotted points will lie close to the 45 degree line x = z. If the data distribution is close to any normal distribution, the plotted points will lie close to some straight line (this is because standardising turns any normal distribution into a standard normal and standardising is a linear transformaiton -- affects slope and intercept but cannot turn a line into a curved pattern)”

(Moore and McCabe p. 80)

To do this in SPSS, click on Plots in the Linear Regression window and select a histogram and normal probability plot of the standardised residuals (alternatively you can simply end your regression syntax with   /RESIDUALS HIST(ZRESID) NORM(ZRESID).)

11. Examine the histogram and normal probability plots of the imports model.  Comment on the shape of the curves and their meaning.

12. Do the same for your favourite model of inflation.  What are the implications for the interpretation of the regression output?

